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Abstract—Intelligently designed false data injection (FDI) at-
tacks have been shown to be able to bypass the χ2-test based bad
data detector (BDD), resulting in physical consequences (such as
line overloads) in the power system. In this paper, using synthetic
PMU measurements and intelligently designed FDI attacks, it is
shown that if an attack is suddenly injected into the system,
a predictive filter with sufficient accuracy is able to detect it.
However, an attacker can gradually increase the magnitude of
the attack to avoid detection, and still cause damage to the system.

I. INTRODUCTION

In the past decade, phasor measurement units (PMUs)
have been widely deployed in power systems for monitoring,
protection, and control purposes. Since PMUs can directly
measure the bus voltage phasor with high sampling rate and
accuracy, they have the potential to play a significant role in
real-time power system state estimation (SE) [1] and dynamic
security assessment [2].

Meanwhile, cyber-attacks against the communication and
computing infrastructure of the monitoring and control sys-
tems of electric power systems have become a growing
concern [3], [4]. As an increasingly important component
of this infrastructure, PMUs are also prone to cyber-attacks
[5]–[7]. Therefore, it is of great importance to evaluate the
vulnerability of PMUs against potential cyber-attacks as well
as to develop preemptive countermeasures.

Here, we focus on a broad class of attacks known as false
data injection (FDI), wherein an intelligent attacker replaces
a subset of measurements with counterfeits. This can be
accomplished against PMUs by, for example, spoofing the
global positioning system (GPS) signal so as to manipulate
a PMU’s timestamps [8]. In this paper, we do not limit
ourselves to GPS spoofing attacks, but consider FDI attacks
accomplished by any means.

The main goals of this paper is to evaluate the effectiveness
of countermeasures that use finite impulse response (FIR)
predictive filters against sophisticated FDI attacks that are
unobservable to current-generation bad data detectors (BDDs)
based on χ2-test. In particular, our contributions are as follows:

1) We create test FDI attacks using a bilevel optimization
approach. These attacks are unobservable in the sense
that they are provably invisible to single-shot BDDs.
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2) In order to test these attacks, we generate synthetic PMU
data by isolating archetypal data profiles from real data.
This technique allows us to create synthetic data to be
tested in the context of the IEEE 118-bus system.

3) We investigate whether these attacks can be detected by
taking into account temporal correlations. In particular,
we use a predictive filtering approach based on the three
sample quadratic prediction algorithm (TSQPA) [9], a
technique that accurately predicts the next sample of real
data based on the previous three. Thus, a large residue
of this predictive filter indicates an attack. Moreover, we
test an alternative predictive filter learned from real data,
that predicts the next sample as a linear combination of
the previous five.

4) Finally, we consider two variants of the attack, depend-
ing on whether it is applied suddenly—i.e., at a single
instant—or ramped—i.e., gradually increased over a pe-
riod of time. We demonstrate that predictive filters such
as TSQPA can detect sudden attacks with high accuracy,
but not ramping attacks.

II. PRELIMINARIES

A. PMU-based Linear State Estimation

Throughout our analysis, we assume that the power system
is completely observable by PMUs. A PMU placed at a
bus measures the complex voltage of that bus, and complex
currents on all branches connected to it, typically at a rate of
30 samples per second [10]. These measurements are linear
functions of the states, i.e., the complex bus voltages. Let p
be the number of buses (states), and n be the number of PMU
measurements in the power system, the PMU measurement
vector at each time instant, i, is given by

wi = Hxi + ei =

[
I ′

Y

]
xi + ei, (1)

where wi is the n × 1 measurement vector; xi is the p ×
1 vector of true states (complex voltages); ei is an n × 1
additive Gaussian noise vector whose covariance matrix R =
diag[σ2

1 , σ
2
2 , . . . , σ

2
n]; H is the n × p measurement Jacobian

matrix, consisting of I ′, the reduced identity matrix with only
rows corresponding to PMU buses; and Y , the dependency
matrix between available current measurements and states. The
weighted least squares estimate of xi, x̂i, is given by [11]

x̂i = (HTR−1H)−1HTR−1wi. (2)



The conventional residue-based BDD performs chi-square test
on the residue vector

ri,S = wi −Hx̂i (3)

to detect bad measurements. Note that the subscript S denotes
state estimation; we introduce this notation in an effort to dis-
tinguish measurement residue resulting from state estimation
from those resulting from using predictive algorithms that we
introduce in Sec. II-C.

B. Unobservable FDI Attacks on PMU Measurements

Suppose an attacker can change measurements in a set S
by controlling a subset of PMUs. At each time instant, i, it
can replace wi with

w̄i = wi + di, (4)

where the non-zero entries of the measurement attack vector
di are all within S . An attack is defined to be unobservable
[12] to the conventional residue-based BDD if

di = Hci, (5)

where the ci is the state attack vector. Substituting (4) and (5)
into (2) yields the estimated states x̄i under attack

x̄i = x̂i + ci. (6)

The residue vector under attack

r̄i,S = w̄i −Hx̄i
= wi + di −Hx̂i −Hci = wi −Hx̂i (7)

is the same as that without attack. Therefore, attacks in the
form of (5) cannot be detected by the conventional BDD.

C. Three Sample-based Quadratic Prediction Algorithm
(TSQPA)

The residue-based BDD discussed in Sec. II-B does not con-
sider temporal correlations in PMU data to detect an anomaly.
To validate the quality of the incoming measurements, Gao
et al. in [9] investigate temporal correlations in PMU data
to find the relationship between the past, present, and future
measurements. In particular, they prove that for loads changing
at a constant power factor, the complex voltage phasor follows
a quadratic trajectory. Applying auto-regressive modeling on
a quadratic trajectory, they show that the vector of complex
voltages at the next time instant can be predicted using the
present and past states as follows:

x(i|i−1) = 3xi−1 − 3xi−2 + xi−3, (8)

where x(i|i−1) denotes the predicted value of the complex
voltage at time instant i, when the voltages at instants i − 3
through i − 1 are known. The authors in [9] also test the
performance of TSQPA for detecting dynamic events such
as the opening of transmission lines and short-circuit faults.
Robustness of TSQPA for analyzing system events for dif-
ferent load models has been demonstrated in [13], while
it was used for conditioning and validating real PMU data

in [14]. However, the effectiveness of TSQPA in detecting
anomalies or cyber-attacks in PMU measurements has not
been investigated yet. TSQPA is emerging as a basis for
real-time PMU data monitoring by some US power utilities,
and therefore, it is important to evaluate its effectiveness
in detecting cyber-attacks. To this end, we use TSQPA as
a detector to detect anomalies due to cyber-attacks in the
following way.

Applying (8) on estimated voltages x̂i gives the predicted
voltage x̂(i|i−1). An observation residue ri,T (where the sub-
script T stands for TSQPA) at the ith time instant can be
obtained as:

ri,T = x̂(i|i−1) − x̂i (9)

If the magnitude of the observed residue ri,T exceeds a
threshold, then a cyber-attack detection is declared.

Finally, as a point of comparison, we also consider a higher
order data-driven predictive filter, for which we similarly
calculate residues to detect attacks. Details of such a filter
will be given in Sec. V-A.

D. Attack Design Optimization

In this paper, we focus on a class of unobservable FDI
attacks that aim to maximize the physical power flow on a
target line subsequent to a generation re-dispatch, and possibly
cause overflow [15]. The attacker injects false measurements in
the form of (4), leading to false estimated states as in (6). For
a known generation commitment and dispatch plan, these false
estimated states lead to false load estimations. The generation
re-dispatch caused by the false loads will maximize the phys-
ical power flow on the target line. The worst-case attack can
be found using an attacker-defender bi-level linear program
(ADBLP) [15], wherein the first level models the attacker’s
objective and limitations, while the second level models the
system response via DC-optimal power flow (DCOPF). The
formulation of the ADBLP is given by

maximize
c,P∗

G

f(P ∗G) (10a)

subject to
A1c ≤ b1 (10b)

{P ∗G} = arg
{

min
PG

g(PG)

}
(10c)

subject to
A2PG ≤ b2 (10d)

where PG and P ∗G are vectors of generation dispatch variables
and optimal generation dispatch solved by DCOPF, respec-
tively. The objective function (10a) maximizes the physical
power flow on a target line, which is a function of generation
dispatch given fixed topology and branch parameters. The
attacker is constrained by (10b), which include the resource
limitation characterized by the l1-norm of c, and the detection
limitation characterized by the load shift caused by the attack.
In each case, A1 and b1 are the appropriate parameters.
For example, for the load shift constraint, A1 = [H;−H]



and b1 = [λ · PD;λ · PD], where λ is the max load shift
in percentage, and PD is the vector of loads at all buses.
The system DCOPF objective (10c) is to minimize the total
generation cost. The DCOPF constraints are represented by
(10d) that includes node balance, line limit constraints, and
generation limit constraints, where A2 and b2 indicate the
appropriate system parameters for these constraints.

This ADBLP can be solved by replacing the second level
problem by its Karush-Kuhn-Tucker (KKT) conditions and
introducing binary variables to convert the non-convex com-
plementary slackness conditions into mixed-integer constraints
[15]. The problem then becomes a single level mixed-integer
linear program, and can be efficiently solved by the algorithms
described in [16]. Alternatively, one can use a Benders’
decomposition based algorithm to solve the ADBLP as in-
troduced in [17].

III. ATTACK IMPLEMENTATION

A. False Measurement Creation

We assume that the system performs DCOPF based on the
measurements obtained at every five minutes [18]. After the
system re-dispatches at time instant i = 0, the attacker solves
the ADBLP (10) to obtain the state attack vector c, and then
uses c to create false measurements. Although the loads at time
instant i = 0 may be different than those at the fifth minute
when the system re-dispatches again, it is reasonable to assume
that they will not change dramatically. Hence, the attack vector
solved at i = 0 is expected to have similar consequences to the
one solved using loads at the fifth minute. Once the state attack
vector c is obtained, the attacker can form a measurement
attack vector d to create false measurements w̄. However, it is
unrealistic for the attacker to be omniscient and omnipotent.
Thus, as mentioned in Sec. II-B, we assume the attacker only
controls a subset of PMUs, whose measurements are in S .
Given c, an attack subgraph can be constructed as in [19],
consisting only of PMUs under the attacker’s control. Note
that here c is the outcome of the ADBLP (10), and hence is
an attack vector on voltage angles. The measurement attack
vector directly formed as d = Hc will cause loads appearing
at non-load buses, and possibly raise alarm at the control
center. Therefore, the attacker has to solve for the final state
attack vector c̃ that ensures the power injections at non-load
buses remain unchanged, using the Newton-Raphson method
as described in [20]. Once c̃ is obtained, the measurement
attack vector can be constructed as d = Hc̃.

B. Attack Strategies

We consider the following two strategies for the attacker to
inject false measurements:

(1) Sudden attack. At any time instant on or before the fifth
minute, the attacker injects d, the measurement attack vector
computed at i = 0+, and keeps injecting d afterwards. Without
loss of generality, we focus on the situation where d is injected
at the fifth minute. Denoting i as the sample number, the fifth

minute is i = 9000 assuming PMU outputs at 30 samples/sec.
The false measurements in a sudden attack are given by

w̄i =

{
wi, i < 9000
wi + d, i ≥ 9000

. (11)

A sudden attack will cause the system to re-dispatch according
to the false loads, and maximize the physical power flow on
the target branch. However, as we will demonstrate in Sec. V,
sudden attacks can be detected by predictive filters such as
TSQPA.

(2) Ramping attack. In this strategy, the attacker gradually
increases the attack magnitude during the first five-minute
interval, starting at i = 1, ensuring d is injected at the
fifth minute, and keeps injecting d afterwards. The false
measurements in a ramping attack are given by

w̄i =

{
wi + i

9000 · d, i < 9000
wi + d, i ≥ 9000

. (12)

At t = 5 mins, the false measurements in ramping attack
are identical to those in sudden attack, and hence, have the
same consequences. Sec. V will illustrate that predictive filters
have more difficulty detecting ramping attacks due to the slow
change across the 5 minute interval.

IV. GENERATION OF SYNTHETIC LOAD PROFILE AT PMU
TIME SCALE

To verify the proposed FDI attacks against PMU-based
system operations, a realistic testbed is required; specifically,
the PMU measurements used to test the BDDs must reflect
realistic operating conditions. In our tests, we achieve this by
simulating the dynamics of the IEEE 118 bus system with time
varying loads and primary generation control. The bus-level
time-series load data for this test system is generated based
on a real PMU dataset that was provided by a large utility
company in the southwest of the US. The approach we adopted
to create realistic load profiles is mainly based on the work
described in [21]. The authors present a data-driven algorithm
to learn from a real dataset the spatial and temporal correlation
between system loads and use the learnt model to generate new
synthetic data that retains the same characteristics. In [21], the
approach is demonstrated on SCADA-based, hourly load data.
In this section, we detail how this technique was adapted to the
learning and generation of load profiles at PMU data speeds.

The utility company provided us with one week worth of
PMU data for a group of neighboring substations. From the
voltage and current measurements of each bus and line, we
compute the loads of two substations, one at the 500kV level
and one at 230kV level. Each time-series is 168 hours long,
sampled at 30 samples/sec. From these two data streams we
can learn the behavior of loads at different voltage levels and
subsequently map them to the loads of the IEEE 118 bus sys-
tem according to their voltage levels. The procedure described
in the remainder of this section is followed independently for
each of the two loads.

For our simulations, we are interested in generating load
data at each bus for 10 minutes. For this reason, the time-series



load data for one consecutive week is broken into segments
of length of 10 minutes; this results in 1008 segments, each
containing 18,000 samples. The segments are then stacked
to form a load matrix P ∈ R1008×18000. As shown in
[21], it is possible to learn the behavior of the loads over
time by factorizing the load matrix P using singular value
decomposition (SVD) as P = UΣV T . The rows of V T ,
which are vectors of size 1 × 18000, constitute the basis of
the load matrix and they correspond to archetypal temporal
profiles. The synthetic loads will be generated by taking linear
combinations of a subset of the first load basis (first rows of
V T ). To determine the number of basis vectors to be used in
the generative model it is useful to look at approximations of
P , defined as P̂ = Uf × Σf × V fT

, where Uf indicates the
first f columns of U , Σf the first f columns and rows of Σ,
and V f the f first columns of V . By varying the value of
f (corresponding to the number of basis vectors to be used)
and measuring the root mean squared error (RMSE) between
P and P̂ we can determine an appropriate number of base
temporal profiles to be used in the generative model. In Fig.
1, the error is plotted as a function of the number of basis
vectors used. It can be seen that the error decreases rapidly up
to f = 10 and then it slowly reaches zero when all the basis
vectors are used. For this reason, the first 10 temporal profiles
are used in the generation of the synthetic load profiles.

Figure 1. Root mean squared error between P and P̂ as a function of the
number of basis used.

Having identified some typical temporal load patterns, a
new load profile can be created by generating a vector of
coefficients and multiplying it by the set of base profiles
contained in V. To compute these new coefficients we need
to learn the distribution of the coefficients in the original
data (e.g. the first 10 columns of U ). Using MATLAB, it is
observed that each vector of coefficients follows a different
Gaussian distribution. At this point, a new matrix of load
profiles for n buses can be generated as:

Pnew = U10
newΣ10V 10T (13)

where Pnew ∈ Rn×18000, U10
new ∈ Rn×10 is a matrix of

coefficients randomly sampled from the distributions learnt
from the columns of U , and Σ10 and V 10T represent the
first 10 singular values and first 10 temporal profiles obtained

from the original PMU load data. To account for the spatial
correlation which exists between neighboring loads, the model
is modified as follows:

Pnew = (DU10
new)Σ10V 10T = U ′10newΣ10V 10T (14)

where D ∈ Rn×n, and each entry di,j of D is given by:

di,j =


1, if i = j

e−2disti,j , if disti,j ≤ 3 and i 6= j

0, otherwise.
(15)

and disti,j is the minimum number of branches between buses
i and j. Overall, this relation was experimentally derived in
[21] and was adapted to the system for which we designed
the synthetic loads.

V. NUMERICAL RESULTS

A. Experiment Setup

We use the IEEE 118-bus system in our simulations. The
PMU placement scheme is obtained from [22]. The following
steps are required before we can test the performance of
predictive filters for attack detection:

1) Synthetic load profile generation: Using the model in (14)
on the 500kV and 230kV loads, we generate individual
load profiles for 10 minutes for the loads in the IEEE
118 bus system according to their nominal voltage. Fig.
2 shows the synthetic load profiles generated for two
adjacent loads. As expected, they show a similar pattern
over 10 minutes.

Figure 2. Synthetic load profiles generated for two neighboring buses.

2) Synthetic PMU measurements generation: Based on the
synthetic loads, dynamic simulations are run in PSLF [23]



and voltage and current data are sampled 30 times per
second to represent the PMU measurements. For adding
noise to the synthetic PMU measurements we investigate
the observation residues computed by TSQPA in the real
PMU data obtained from the utility. The noise in the
synthetic measurements are added in proportion to the
noise in real data such that it results in similar observation
residue for a no-attack scenario. The noise in magnitude
and angle are selected from a Gaussian distribution of
zero mean and 0.01% standard deviation, which ensures
the total vector error (TVE) to be within 1% [24].

3) False measurements creation: A state attack vector c is
obtained by solving the attack design ADBLP in Sec.
II-D with 10% load shift constraint. We then follow the
procedure described in Sec. III to create the measurement
attack vector d, and subsequently the false measurements
w̄ for both sudden attack and ramping attack. The gener-
ation re-dispatch caused by the false measurements will
lead to 30% overflow on branch 54 (bus 30-38) and 22%
overflow on branch 37 (bus 8-30).

4) Data-driven five-sample predictive (FSP) filter: Based on
the real PMU measurements that we received from the
utility, we perform a moving window linear regression
to learn the best coefficients of a five-sample predictive
filter. This predictive filter is given by

x(i|i−1) =0.9186xi−1 + 0.0196xi−2 + 0.0438xi−3

+ 0.0058xi−4 + 0.0122xi−5. (16)

B. Attack Detection using Predictive Filters

We now investigate whether intelligently designed FDI
attacks can be detected by predictive filters. The hypothesis
of detecting an attack is that the observation residue in the
presence of an attack would increase. Note that these attacks
cannot be detected by the χ2-based BDD currently employed
in the power systems. False measurements resulting from sud-
den and ramping attack, as well as attack-free measurements at
two buses of the IEEE 118 bus system are illustrated in Fig. 3.
It can be seen that the measurements of both attack strategies
are identical after 5 minutes (9,000 samples). Fig. 3(a) shows
a relatively large attack, where the attack magnitude on the
real part of the voltage at bus 8 at the fifth minute is 0.0141
per unit, while Fig. 3(b) shows a small attack at bus 40 where
the attack magnitude to the real part of the voltage is merely
0.0017 per unit.

Fig. 4 demonstrates the observation residues when applying
the predictive filters on measurements with sudden attack.
Both TSQPA and FSP give a large residue at the fifth minute
when the attack is injected, indicating that they are both able
to detect sudden attacks. Moreover, they can detect both the
attacks at bus 8 and bus 40, even though the attack magnitude
at bus 40 is much smaller.

Fig. 5 illustrates the observation residues obtained by ap-
plying predictive filters on measurements with ramping attack.
The residues do not increase because the attack magnitude at
each time instant is too small. These observations indicate that
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Figure 3. Examples of false measurements at (a) bus 8; and (b) bus 40
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Figure 4. Sudden attack detected by predictive filters

gradually ramping attacks can avoid detection by the selected
predictive filters.

VI. CONCLUDING REMARKS

In this paper, we applied two predictive filters to detect FDI
attacks against PMU measurements that are unobservable by
the conventional measurement residue-based bad data detector.
We first created synthetic load profiles at PMU time scale that
capture both temporal and spatial correlations. Using these
synthetic load profiles, we then generated synthetic PMU mea-
surements by running dynamic simulations. Subsequently, we
designed test FDI attacks via a bilevel optimization approach,
and created two sets of unobservable false measurements, one
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Figure 5. Ramping attack undetected by predictive filters

for sudden attack and the other for ramping attack. Finally, the
false measurements are tested through a theoretically derived
and a data-driven predictive filter, to see whether they can
detect the attacks.

The observation residues obtained from the two predictive
filters for both attack strategies indicate that sudden attacks
can be detected by predictive filters, while ramping attacks
cannot, because the ramping attack magnitudes between time
instants are smaller than those of the sudden attack. Future
work will include designing more dynamic detection schemes
beyond FIR filters, such as Kalman filters, to detect ramping
attacks, as well as machine learning-based countermeasures to
mitigate FDI attacks.
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